Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis.

نویسندگان

  • Byoung Sam Ko
  • Jinmi Kim
  • Jung Hoe Kim
چکیده

Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source. An enzyme assay experiment indicated that BSXDH-3 lost apparently all XDH activity. Xylitol production by BSXDH-3 was evaluated using a xylitol fermentation medium with glucose as a cosubstrate. As glucose was found to be an insufficient cosubstrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best cosubstrate. BSXDH-3 produced xylitol with a volumetric productivity of 3.23 g liter(-1) h(-1), a specific productivity of 0.76 g g(-1) h(-1), and a xylitol yield of 98%. This is the first report of gene disruption of C. tropicalis for enhancing the efficiency of xylitol production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis

Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in i...

متن کامل

Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis.

Xylose reductase (XR) is a key enzyme in D-xylose metabolism, catalyzing the reduction of D-xylose to xylitol. An NADH-preferring XR was purified to homogeneity from Candida parapsilosis KFCC-10875, and the xyl1 gene encoding a 324-amino-acid polypeptide with a molecular mass of 36,629 Da was subsequently isolated using internal amino acid sequences and 5' and 3' rapid amplification of cDNA end...

متن کامل

Helsinki University of Technology, Department of Chemical Technology

The aim of this study was to develop a biotechnological production process for xylitol. The xylitol production characteristics of Candida millerii, Candida guilliermondii and Candida tropicalis were compared. C. tropicalis was the best xylitol producer. A volumetric productivity of 5.7 g xylitol L h was achieved with 69 % yield from D-xylose on a mineral medium with a modified repeated fed batc...

متن کامل

Enhancement of Xylitol Production Rate with the EMP Pathway Engineered Candida tropicalis

NADPH regeneration is a limiting factor in reduction of xylose to xylitol in C. tropicalis. The oxidative PPP is the major source of NADPH biosynthesis in yeast. To enhance metabolic flux through PPP for promotion of NADPH regeneration. Genes involoved in EMP pathway were engineered by sequencial disruption and over-expression. For this, several genes involves in EMP pathway and promoters were ...

متن کامل

Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob

Xylitol production was compared in fed batch fermentation by Saccharomyces cerevisiae strains overexpressing xylose reductase (XR) genes from Candida tropicalis, Pichia stipitis, Neurospora crassa, and an endogenous gene GRE3. The gene encoding a xylose specific transporter (SUT1) from P. stipitis was cloned to improve xylose transport and fed batch fermentation was used with glucose as a cosub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 72 6  شماره 

صفحات  -

تاریخ انتشار 2006